Year 12 Chapter 6B Q5 b)

The following illustration contains many useful techniques and things to watch out. Read all the notes carefully.

$$\therefore \quad \cos 2x = 1 - 2\sin^2 x$$

$$\therefore \quad \sin^2 x = \frac{1 - \cos 2x}{2}$$

Likewise,
$$\sin^2 2x = \frac{1 - \cos 4x}{2} \quad \text{(by replacing } x \text{ with } 2x\text{)}$$

$$I = \int \sin^2 2x \, dx$$

= $\int \frac{1 - \cos 4x}{2} \, dx$
= $\int \frac{1}{2} - \frac{\cos 4x}{2} \, dx$
= $\int \frac{1}{2} \, dx - \frac{1}{2} \int \cos 4x \, dx$
= $\frac{1}{2} \, x - \frac{1}{2} \left(\frac{1}{4} \sin 4x\right) + C$ (Must remove all \int signs and add C in the same step.)
= $\frac{1}{2} \, x - \frac{1}{8} \sin 4x + C.$

Notes:

In order to use the formula $\int \cos x \, dx = \sin x + C$, the variable in \cos and the one in d must be the same, so we have to make up the factor 4.

You can image dx being replaced by $\frac{d(4x)}{4}$, so $\int \cos 4x \ dx = \int \cos 4x \ \frac{d(4x)}{4} = \frac{1}{4} \int \cos 4x \ d(4x) = \frac{1}{4} \sin 4x + C \quad (\text{now both cos and } d \text{ carry } 4x).$

However, you are not allowed to write d(4x), even it is correct in concept. Therefore, in your work you need to skip the steps in between and write:

$$\int \cos 4x \, dx = \frac{1}{4} \sin 4x + C.$$

Alternatively, you can introduce a new variable u = 4x, so du = 4dx and $dx = \frac{du}{4}$.

 $\int \cos 4x \, dx = \int \cos u \, \frac{du}{4} = \frac{1}{4} \int \cos u \, du \qquad \text{(now the variable in cos and the one in } d \text{ are the same)}$ $= \frac{1}{4} \sin u + C = \frac{1}{4} \sin 4x + C.$

IMPORTANT:

The answer can only contain x, not u. So you need to change u back to the equivalent expression of x.