Year 12 Chapter 6B Q5 b)

The following illustration contains many useful techniques and things to watch out. Read all the notes carefully.
$\because \quad \cos 2 x=1-2 \sin ^{2} x$
$\therefore \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}$

Likewise, $\quad \sin ^{2} 2 x=\frac{1-\cos 4 x}{2} \quad$ (by replacing x with $2 x$)

$$
\begin{aligned}
I & =\int \sin ^{2} 2 x d x \\
& =\int \frac{1-\cos 4 x}{2} d x \\
& =\int \frac{1}{2}-\frac{\cos 4 x}{2} d x \\
& =\int \frac{1}{2} d x-\frac{1}{2} \int \cos 4 x d x \\
& =\frac{1}{2} x-\frac{1}{2}\left(\frac{1}{4} \sin 4 x\right)+C \quad \text { (Must remove all } \int \text { signs and add } C \text { in the same step.) } \\
& =\frac{1}{2} x-\frac{1}{8} \sin 4 x+C .
\end{aligned}
$$

Notes:

In order to use the formula $\int \cos x d x=\sin x+C, \quad$ the variable in \cos and the one in d must be the same, so we have to make up the factor 4 .

You can image $d x$ being replaced by $\frac{d(4 x)}{4}$, so

$$
\int \cos 4 x d x=\int \cos 4 x \frac{d(4 x)}{4}=\frac{1}{4} \int \cos 4 x d(4 x)=\frac{1}{4} \sin 4 x+C \quad(\text { now both } \cos \text { and } d \text { carry } 4 x)
$$

However, you are not allowed to write $d(4 x)$, even it is correct in concept.
Therefore, in your work you need to skip the steps in between and write:
$\int \cos 4 x d x=\frac{1}{4} \sin 4 x+C$.

Alternatively, you can introduce a new variable $u=4 x$, so $d u=4 d x$ and $d x=\frac{d u}{4}$.

$$
\begin{aligned}
& \int \cos 4 x d x=\int \cos u \frac{d u}{4}=\frac{1}{4} \int \cos u d u \quad \text { (now the variable in } \cos \text { and the one in } d \text { are the same) } \\
& =\frac{1}{4} \sin u+C=\frac{1}{4} \sin 4 x+C
\end{aligned}
$$

IMPORTANT:

The answer can only contain x, not u. So you need to change u back to the equivalent expression of x.

